Wind is Energy was developed by The NEED Project with funding from the American Wind Energy Association.
Wind

Question: What evidence is there that the wind is blowing?

Observe the wind. Draw pictures of evidence that the wind is blowing.
Wind

Question: What evidence did you find that proved the wind was blowing?

Look back at your evidence that the wind was blowing. Describe how the wind was blowing. Write about what you saw that proves the wind was blowing.

Energy Search

Question: How do we use energy at school?

<table>
<thead>
<tr>
<th>Energy is light.</th>
<th>![Light Bulb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy is sound.</td>
<td>![Drums]</td>
</tr>
<tr>
<td>Energy is heat.</td>
<td>![Fire]</td>
</tr>
<tr>
<td>Energy is motion and growth.</td>
<td>![Race Car]</td>
</tr>
<tr>
<td>Energy runs machines.</td>
<td>![Laptop]</td>
</tr>
</tbody>
</table>

Energy is light.

Energy is sound.

Energy is heat.

Energy is motion and growth.

Energy runs machines.
Pinwheels

Question: What makes the pinwheel spin?

__

__

__

__

__

__

__

__
Wind Can Do Work, Part 1

Guiding Question: How can wind do work?

Question: What will happen when wind blows into the windmill?

I predict __

__

because ___

__

Draw a picture and use words to explain what happened.

__

__

__
1. Make your windmill.

2. Draw a diagram of the windmill below and label the parts.

Windmill Diagram
Wind Can Do Work, Part 2

Question: How many paper clips can the wind lift to the top of the windmill?

I predict ________________________________

because ________________________________

<table>
<thead>
<tr>
<th>Trial</th>
<th>Number of Paper Clips</th>
<th>Lifted to the top? (Yes or No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Weightlifter Turbine Diagram
Blade Design Ideas

Draw some ideas you have for what the blades could look like.

My blade design ideas...

My group’s blade design will be...
Date: ________________________________

Question: __

__

__

I predict ___

__

because __

__

Data:
Data and Observations Continued:
Wind Can Do Work Conclusion

How does wind do work? What did you learn in your windmill investigations? How much work did your windmills do? Is the wind a good source of energy to do work? Why or why not?

__

__

__

__

__

__

__

__

__

__

__

__

__

__
Wind Measurement Tools

Draw diagrams of the wind measuring tools you will be using. Label each one and tell what it measures.
Measuring the Wind

Question: Will the wind blow the same speed in different locations around the school?

I predict __

because __

Data and Observations: From what direction is the wind blowing?

__

__

__
<table>
<thead>
<tr>
<th>Location</th>
<th>Time</th>
<th>Revolutions in 10 Seconds</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wind Reflection

What did you learn about wind and energy? What is the most important thing you learned?

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__
What are You Wondering About?

After learning something new, scientists often have even more questions to which they want to find answers.

• What questions about wind do you still have?
• How can you find the answers to your questions?

__
__
__
__
__
__
__
__
__
__
__
__
__
__
National Sponsors and Partners

Air Equipment Company
Alaska Electric Light & Power Company
Albuquerque Public Schools
American Electric Power
American Fuel & Petrochemical Manufacturers
Arizona Public Service
Armstrong Energy Corporation
Barnstable County, Massachusetts
Robert L. Bayless, Producer, LLC
BG Group/Shell
BP America Inc.
Blue Grass Energy
Cape Light Compact–Massachusetts
Central Falls School District
Chugach Electric Association, Inc.
CITGO
Clean Energy Collective
Colonial Pipeline
Columbia Gas of Massachusetts
ComEd
ConEdison Solutions
ConocoPhillips
Constellation
Cuesta College
David Petroleum Corporation
Desk and Derrick of Roswell, NM
Direct Energy
Dominion Energy
Donors Choose
Duke Energy
East Kentucky Power
Energy Market Authority – Singapore
Escambia County Public School Foundation
Eversource
Exelon Foundation
Foundation for Environmental Education
FPL
The Franklin Institute
George Mason University – Environmental Science and Policy
Gerald Harrington, Geologist
Government of Thailand–Energy Ministry
Green Power EMC
Guilford County Schools – North Carolina
Gulf Power
Hawaii Energy
Idaho National Laboratory
Illinois Clean Energy Community Foundation
Illinois Institute of Technology
Independent Petroleum Association of New Mexico
James Madison University
Kentucky Department of Energy Development and Independence
Kentucky Power – An AEP Company
Kentucky Utilities Company
League of United Latin American Citizens – National Educational Service Centers
Leidos
Linn County Rural Electric Cooperative
Llano Land and Exploration
Louisville Gas and Electric Company
Mississippi Development Authority–Energy Division
Mississippi Gulf Coast Community Foundation
Mojave Environmental Education Consortium
Mojave Unified School District
Montana Energy Education Council
The Mountain Institute
National Fuel
National Grid
National Hydropower Association
National Ocean Industries Association
National Renewable Energy Laboratory
NC Green Power
New Mexico Oil Corporation
New Mexico Landman’s Association
NextEra Energy Resources
NEXTracker
Nicor Gas
Nisource Charitable Foundation
Noble Energy
Nolin Rural Electric Cooperative
Northern Rivers Family Services
North Carolina Department of Environmental Quality
North Shore Gas
Offshore Technology Conference
Ohio Energy Project
Opterra Energy
Pacific Gas and Electric Company
PECO
Pecos Valley Energy Committee
Peoples Gas
Pepco
Performance Services, Inc.
Petroleum Equipment and Services Association
Phillips 66
PNM
PowerSouth Energy Cooperative
Providence Public Schools
Quarto Publishing Group
Read & Stevens, Inc.
Renewable Energy Alaska Project
Rhode Island Office of Energy Resources
Robert Armstrong
Roswell Geological Society
Salt River Project
Salt River Rural Electric Cooperative
Saudi Aramco
Schlumberger
C.T. Seaver Trust
Secure Futures, LLC
Shell
Shell Chemicals
Sigora Solar
Singapore Ministry of Education
Society of Petroleum Engineers
Society of Petroleum Engineers – Middle East, North Africa and South Asia
Solar City
David Sorenson
South Orange County Community College District
Tennessee Department of Economic and Community Development–Energy Division
Tesla
Tesoro Foundation
Tri-State Generation and Transmission
TXU Energy
United Way of Greater Philadelphia and Southern New Jersey
University of Kentucky
University of Maine
University of North Carolina
University of Tennessee
U.S. Department of Energy
U.S. Department of Energy–Wind for Schools
U.S. Energy Information Administration
United States Virgin Islands Energy Office
Wayne County Sustainable Energy
Western Massachusetts Electric Company
Yates Petroleum Corporation

©2017 The NEED Project 8408 Kao Circle, Manassas, VA 20110 1.800.875.5029 www.NEED.org