Museum of Solid Waste and Energy

Students explore the relationship between trash and energy by constructing and presenting exhibits on different aspects of solid waste including recycling, source reduction, landfilling, and waste-to-energy plants.

Grade Levels:

- Int Intermediate
- Sec Secondary

Subject Areas:

- Science
- Social Studies
- Math
- Language Arts
- Technology
Teacher Advisory Board

Constance Beatty
Kankakee, IL

James M. Brown
Saratoga Springs, NY

Amy Constant - Schott
Raleigh, NC

Nina Corley
Galveston, TX

Shannon Donovan
Greene, RI

Linda Fonner
New Martinsville, WV

Samantha Forbes
Vienna, VA

Michelle Garlick
Long Grove, IL

Erin Gockel
Farmington, NM

Robert Griegoliet
Naperville, IL

Bob Hodash
Bakersfield, CA

DaNel Hogan
Tucson, AZ

Greg Holman
Paradise, CA

Barbara Lazar
Albuquerque, NM

Robert Lazar
Albuquerque, NM

Leslie Lively
Porters Falls, WV

Jennifer Mitchell - Winterbottom
Pottstown, PA

Mollie Mukhamedov
Port St. Lucie, FL

Don Pruett Jr.
Puyallup, WA

Judy Reeves
Lake Charles, LA

Tom Spencer
Chesapeake, VA

Jennifer Trochez
MacLean
Los Angeles, CA

Wayne Yonkelowitz
Fayetteville, WV

NEED Mission Statement

The mission of The NEED Project is to promote an energy conscious and educated society by creating effective networks of students, educators, business, government and community leaders to design and deliver objective, multi-sided energy education programs.

Permission to Copy

NEED curriculum is available for reproduction by classroom teachers only. NEED curriculum may only be reproduced for use outside the classroom setting when express written permission is obtained in advance from The NEED Project. Permission for use can be obtained by contacting info@need.org.

Teacher Advisory Board

In support of NEED, the national Teacher Advisory Board (TAB) is dedicated to developing and promoting standards-based energy curriculum and training.

Energy Data Used in NEED Materials

NEED believes in providing teachers and students with the most recently reported, available, and accurate energy data. Most statistics and data contained within this guide are derived from the U.S. Energy Information Administration. Data is compiled and updated annually where available. Where annual updates are not available, the most current, complete data year available at the time of updates is accessed and printed in NEED materials. To further research energy data, visit the EIA website at www.eia.gov.
Data in this guide comes from the U.S. Energy Information Administration (EIA), The Organization for Economic Development (OECD), and the U.S. Environmental Protection Agency (EPA). The majority of the data in this guide is taken from the EPA, which updates its Advancing Sustainable Materials Management report annually.
Standards Correlation Information

www.NEED.org/curriculumcorrelations

Next Generation Science Standards

- This guide effectively supports many Next Generation Science Standards. This material can satisfy performance expectations, science and engineering practices, disciplinary core ideas, and cross cutting concepts within your required curriculum. For more details on these correlations, please visit NEED’s curriculum correlations website.

Common Core State Standards

- This guide has been correlated to the Common Core State Standards in both language arts and mathematics. These correlations are broken down by grade level and guide title, and can be downloaded as a spreadsheet from the NEED curriculum correlations website.

Individual State Science Standards

- This guide has been correlated to each state’s individual science standards. These correlations are broken down by grade level and guide title, and can be downloaded as a spreadsheet from the NEED website.

NEED has correlated their materials to the Disciplinary Core Ideas of the Next Generation Science Standards. NEED has also correlated all of their materials to The Common Core State Standards for English/Language Arts and Mathematics. All materials are also correlated to each state’s individual science standards. Most files are in Excel format. NEED recommends downloading the file to your computer for use. Save resources, don’t print!

- Navigating the NGSS? We have What You NEED!
- NEED alignment to the Next Generation Science Standards
- Common Core State Standards for English and Language Arts
- Common Core Standards for Mathematics
- Alabama
- Alaska
- Arizona
- Arkansas
- California

NEED is adding new energy workshops all the time. Want to
About the Museum

The Museum of Solid Waste and Energy is a cooperative learning activity. Your students will work together in small groups to complete exhibits that educate others on trash, recycling, and energy. Each group will study one solid waste and energy topic, and create a museum exhibit to teach others about it.

Objectives

- Students will be able to describe how Americans generate waste.
- Students will be able to identify major forms of waste produced and rank them according to the amount produced.
- Students will be able to describe several methods for dealing with waste in the U.S.
- Students will be able to describe how waste can be turned into energy.

What's Included in This Guide

- Teacher's Guide with Museum Survey
- Eight informational text sections on solid waste and energy issues
- Eight Student Guides to accompany informational text
- A graphic organizer to help students organize important information

Using the Museum

This activity has been designed for classroom teachers who want their students to create a museum for the classroom. But there is a lot more you can do with this very important activity! Here are a few ideas:

- School Activity
 Invite all the students in your school (or in one or two grades) to tour your students’ museum. You may set up the museum in the gym, cafeteria, or hallway. Divide the visiting students into eight groups and rotate the groups through the exhibits. This will avoid a situation in which everyone is crowded around one exhibit.

- NEED Day Activity
 Celebrate NEED Day (National Energy Education Development Day) with the Museum of Solid Waste and Energy. NEED Day is always the second to last Friday in March.

- Community Presentation
 Make your museum move! Take your museum to another school, community center, PTA meeting, or shopping mall. Teach others in your community about solid waste and energy and show you care! Administer the Museum Survey to see what your community knows and thinks about some important solid waste topics.

Grade Levels

- Intermediate, grades 6-8
- Secondary, grades 9-12

This activity is geared for students in grades 6-12. The activity is ideally suited for the intermediate teacher who has a self-contained classroom. This activity also works well when older students use it to teach younger students.

Time

5 class periods with additional time for creativity or museum walk activities.

Web Resources

The following links can provide useful and related data that may support discussion.

- U.S. Environmental Protection Agency, Sustainable Materials Management www.epa.gov/smm
- Organisation for Economic Co-operation and Development (OECD) www.oecd.org/about
Preparation

1. Assign your students to the eight exhibit groups. Ideally, each exhibit group should have a good leader/speaker, a good writer, and a good artist.

 Exhibit 1—Introduction to Solid Waste Exhibit 5—Recycling Metals
 Exhibit 2—Source Reduction Exhibit 6—Recycling Paper and Glass
 Exhibit 3—Introduction to Recycling Exhibit 7—Waste-to-Energy
 Exhibit 4—Recycling Plastics Exhibit 8—Landfilling

2. Make a folder for each exhibit group that includes:
 - the exhibit's informational text (one copy per student)
 - the student guide to creating a museum exhibit (one copy per student)
 - the Museum Exhibit Organizer (one copy per student, plus one copy per group)
 - additional materials you have collected

3. Collect equipment and art supplies for students to use in making their exhibits, including:
 - posterboard
 - stencils
 - recycled materials
 - markers, crayons, pencils, etc.
 - a digital or overhead projector
 - transparency film

4. Familiarize yourself with the information discussed in each of the exhibits to better assist students as they develop questions while creating their exhibits.

Day 1

Materials

- One Museum Survey for each student
- Exhibit folders

Procedure

1. Introduce the activity to students. Topics you may want to cover in your introduction include:
 - A general overview of America's solid waste problem
 - The solid waste topics your students will be studying (the eight exhibits)
 - Appropriate behavior for working in groups
 - A timetable for working on the museum exhibits

2. Administer the Museum Survey as a pre-test.

3. Divide students into exhibit groups. Hand out the exhibit folders to each group.

4. Go over student instructions. Ask your students to take out their informational texts, Student Guides, and Museum Exhibit Organizers. Review the Student Guides and point values with the class and answer any questions.

5. Monitor group work as students begin working on their exhibits. Monitor the groups' progress by reviewing the organizers with each group. Students should complete Step 1 of their Student Guides.
Day 2

Materials
- Exhibit folders

Procedure
1. Monitor group work. Students should complete Steps 2 and 3 of their Student Guides.
2. Check work. At the end of class time, ask the groups to hand in rough drafts of their museum scripts.

Days 3 and 4

Materials
- Art supplies/equipment

Procedure
1. Monitor group work. Students will use Days 3 and 4 to complete Step 4 of their Student Guide, finishing projects and scripts.
2. Take a few minutes on Day 4 to go over the schedule for Day 5 (Presentation Day) with your students. Your students need to know that they must set up their exhibits quickly so that all the groups will have enough time to complete their presentations. After the museum presentations, they will take the Museum Survey again.

Day 5

Materials
- One Museum Survey for each student

Procedure
1. Set up exhibits.
2. Student presentations. Exhibit 1 should begin, followed by Exhibit 2, and so on.

Evaluation
- Administer the Museum Survey as a post-test.
- Use the point system on the Student Guides and the individual and group organizers to evaluate student performance.
- Evaluate the activity with your students using the Evaluation Form on page 43 and return it to NEED.

Museum Survey Answers

Technology Connection
- Instead of exhibits, have the students create digital media or interactive presentations.
Museum Survey

Directions: Choose the letter of the response that answers the question or best reflects your own opinion. Choose “I Don’t Know” if you cannot make a good guess. Circle your response.

1. The major method of disposing of the nation’s solid waste is by ______.
 A. composting B. recycling C. burning D. landfilling E. I Don’t Know

2. By weight, which material accounts for about 27 percent of the nation’s solid waste, twice as much as the second leading solid waste material?
 A. Plastic B. Paper C. Glass D. Metals E. I Don’t Know

3. Source reduction means reducing the amount of waste we produce in the first place. Which of the following products have manufacturers targeted for most of their source reduction efforts?
 A. Food products B. Nondurable goods (clothing, disposable diapers, etc.) C. Durable goods (washing machines, toasters, etc.)
 D. Containers and Packaging E. I Don’t Know

4. Laws should be passed requiring people to recycle.
 A. Strongly Agree B. Agree C. Disagree D. Strongly Disagree E. Undecided

5. In a closed-looped recycling system, a used product is ______.
 A. made into the same product B. made into a different product C. used as an energy source to make the same product
 D. landfilled after one use E. I Don’t Know

6. Containers made from which material are coded to help recyclers sort them?
 A. Plastics B. Glass C. Paper D. All Three E. I Don’t Know

7. Which of the following materials is the most valuable to recycle?
 A. Aluminum B. Steel C. Plastic D. Glass E. I Don’t Know

8. How much of our trash do Americans recycle today?
 A. 15 percent B. 25 percent C. 35 percent D. 45 percent E. I Don’t Know

9. When biodegradable garbage is buried in a landfill, the garbage ______.
 A. degrades (rots) quickly B. degrades (rots) slowly C. stays the same D. I Don’t Know

10. Waste-to-energy plants burn garbage and use the heat energy to make electricity. Waste-to-energy plants produce some air pollutants, but they also reduce the amount of waste that must be landfilled. The nation should build more waste-to-energy plants.
 A. Strongly Agree B. Agree C. Disagree D. Strongly Disagree E. Undecided

11. If a new landfill were needed in your area, how would you feel? I would ______.
 A. actively work to support its construction B. support its construction but remain silent C. oppose its construction but remain silent
 D. actively oppose its construction E. Undecided

12. When a photodegradable plastic is exposed to sunlight, the strength of the plastic ______.
 A. increases B. decreases C. stays the same D. I Don’t Know
Exhibit 1: Introduction to Solid Waste

Garbage Time

You might think you have little in common with the typical young person of 2,000 or even 200 years ago; but chances are that both you and your ancient counterpart have heard the same request from a parent, “Please take out the garbage!”

Deciding what to do with garbage is not a new problem. People have wrestled with the trash problem ever since they left their nomadic ways behind some 10,000 years ago. The Greek city-state of Athens opened the first municipal dump more than 2,500 years ago.

During the Middle Ages, European city dwellers threw their garbage and other waste out the door and onto the street. The people of the time didn’t understand that many diseases are caused by filthy environmental conditions.

Then, in the late 1700s, a report in England finally linked disease to unsanitary waste disposal. The age of sanitation was launched. Cities began collecting waste to get it off the streets and out of public waterways. By the late 1800s, Europeans were even burning their waste and using the energy from it to produce electricity.

The situation was a little different on this side of the Atlantic. To the early colonists, America offered a seemingly endless supply of land and natural resources. So when dumping on city streets became intolerable, they simply took their waste to a dump outside of town, using the spot until it was filled before moving on to another site.

As America’s population grew and people left the farms for life in the city, the amount of waste increased. But the method of getting rid of the waste did not; we continued to dump it. Today, 53 percent of our garbage is hauled off and buried in sanitary landfills.

MUNICIPAL SOLID WASTE

People who study garbage use the term municipal solid waste (called MSW) to describe our trash. Municipal solid waste is the food you didn’t eat for dinner, old shoes, the empty jar of peanut butter, or the wrapper from your candy bar.

Garbage History

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 BC</td>
<td>First city dump opened in Athens, Greece.</td>
</tr>
<tr>
<td>1388</td>
<td>English Parliament bans waste disposal in public waterways and ditches.</td>
</tr>
<tr>
<td>1400</td>
<td>Garbage piles up so high outside Paris gates that it interferes with the city’s defenses.</td>
</tr>
<tr>
<td>1690</td>
<td>Paper is made from recycled fibers at a mill near Philadelphia.</td>
</tr>
<tr>
<td>1700s</td>
<td>A report in England links disease to filthy environmental conditions.</td>
</tr>
<tr>
<td>1874</td>
<td>In Nottingham, England, the “destructor” burns garbage and produces electricity. Eleven years later, the first American incinerator opens in New York.</td>
</tr>
<tr>
<td>1900s</td>
<td>Pigs are used to help get rid of garbage in several cities. One expert said 75 pigs could consume one ton of garbage a day.</td>
</tr>
<tr>
<td>1904</td>
<td>First aluminum recycling plants open in U.S.</td>
</tr>
<tr>
<td>1920s</td>
<td>Landfilling becomes most popular way to get rid of garbage.</td>
</tr>
<tr>
<td>1959</td>
<td>The first guide to sanitary landfilling is published.</td>
</tr>
<tr>
<td>1965</td>
<td>Congress passes the first set of solid waste management laws.</td>
</tr>
<tr>
<td>1979</td>
<td>The EPA prohibits open dumping of garbage.</td>
</tr>
<tr>
<td>1987</td>
<td>A garbage barge circles Long Island with no place to unload its cargo.</td>
</tr>
<tr>
<td>1997</td>
<td>First “America Recycles Day.”</td>
</tr>
<tr>
<td>2000s</td>
<td>Over 5,000 municipalities utilize pay-for-recycling programs to reimburse recyclers.</td>
</tr>
</tbody>
</table>

Today The United States has about 1,900 landfills, 80 waste-to-energy facilities, and recycles about 35% of its waste.
All Kinds of Garbage

Municipal solid waste, or MSW, is garbage that comes from homes, businesses, and schools. Municipal solid waste does not include construction waste, industrial waste, or sewage waste. Municipal solid waste can be classified in two ways:

- **By Material**—what the waste is made of. Waste may be plastic, paper, metal, rubber, food waste, or yard waste. A plastic toy and a plastic yogurt carton would be in the same materials category because they are both made of plastic.

- **By Product**—what the waste was used for originally. The waste may be an old potato chip bag, a worn-out shoe, or a broken toy. A plastic beverage container and an aluminum beverage container would be in the same product category because they are both used as containers.

More About Waste

Which material do you think makes up most of the municipal solid waste in this country? Paper? Plastics? Metals? If you said plastics are number one, then you agree with most Americans on this question. The correct answer is actually paper. By weight, paper accounts for 26.5 percent of the municipal solid waste stream. Plastics account for 12.9 percent of the waste we generate.

Sometimes people who study garbage find it more useful to know what waste was used for, instead of what it was made from. They put waste in five product categories:

- Containers/Packaging: This includes cans, jars, bags, bottles, boxes, and wrapping materials. Containers and packaging form the biggest product category.

- Nondurable consumer goods: These goods are called nondurable because they are not meant to last a long time. This category includes many paper products such as newspapers, magazines, and paper towels. This category also includes clothing and disposable dinner plates.

- Durable consumer goods: The goods in this category are called durable because they are meant to last a long time. This category is made of many bulky and oversized items like washing machines, old furniture, and rubber tires.

- Yard wastes: This category is made mostly of grass clippings, but it also includes dead plants and bushes, branches blown down by the wind, and even dirt!

- Food wastes: This is what you didn’t eat for dinner, or the mysterious green gunk on the dish in your refrigerator.

Waste Disposal

How can we solve America’s waste disposal problem? There is no single answer. Most experts agree that we should use four steps to manage our waste problem in this order:

1. **Source Reduction**
 Reducing the waste we produce in the first place.

2. **Recycling**
 Using old products to make new products.

3. **Waste-to-Energy**
 Burning trash to produce steam and electricity.

4. **Landfilling**
 Burying waste that should not be burned or recycled.
A Growing Problem

Americans are producing more waste with each passing year. Over the past 50 years, the waste produced in this country has almost tripled, from 88 million tons in 1960 to about 258 million tons in 2014. Some of this increase is linked to U.S. population growth. After all, there are more Americans today than there were in 1960. But that doesn’t account for the whole increase.

Our lifestyle has changed, too. People are buying more convenience items and more disposables, and they choose from a wider variety of products. Today, the average American generates 4.4 pounds of trash every day. That’s almost 2 pounds more trash than the average American produced per day in 1960.

For the next few years, the government predicts the average American will continue to generate between four and five pounds of trash per day. Source reduction, like composting and reduced packaging, will play a major role in this leveling.

What Do We Do With Our Trash?

How we dispose of our waste has changed a lot throughout the history of the United States and world. Trash used to be just tossed out the front door and even in waterways. Today, our waste can be disposed of in three major ways to help maintain our local environment, create new products, and even generate more energy. We dispose of our waste through landfilling, recycling, and burning. Despite a major growth in recycling in the past few decades, landfilling is still the most used method for disposing of our waste. Burning our trash in incinerators and waste-to-energy facilities provides a way to deal with waste that cannot be landfilled, and reduces the amount of waste sent to landfills. In some places, the heat from the burned waste also provides electricity!
Exhibit 1: Introduction to Solid Waste

Step 1: Learn About Solid Waste
1. Individually, read your informational text and list the important and interesting facts on your individual organizer. 1-5 points
2. As a group, decide which facts you want to teach others and list them on your group organizer. Make sure you answer these questions:
 ▪ What is trash?
 ▪ How can garbage be classified?
 ▪ Why do we produce so much waste?
 ▪ What do we do with our trash?
Step 2: Plan Your Exhibit
1. As a group, make a list of the items you can use to make your exhibit interesting on your group organizer. 1-5 points
 Here are some suggestions:
 ▪ Label different materials with the percent of waste by weight they contribute to total waste generated.
 ▪ Make an expanded garbage timeline.
 ▪ Make a graph showing what we do with our trash.
Step 3: Use Your Talent and Write Your Script
1. As a group, decide who will do which jobs and list them on your group organizer. You can have more than one person working on each job. Be sure to cover the following jobs:
 ▪ Script Writer
 ▪ Display Creator(s)
 ▪ Materials Collector
 ▪ Presenter
2. Write a three minute script using the list of important facts your group generated. 1-5 points
Step 4: Create Your Exhibit
1. Create an interesting display with pictures, graphs, and hands-on materials. Make sure the display and the script cover the same information.
2. Practice the script so that you won’t have to read it. Use note cards with the important facts listed on them.
Step 5: Teach Others
1. Give a presentation of your exhibit to others. 1-5 points

Total Points: ___________________
Exhibit 2: Source Reduction

Four Pounds + of Garbage

“Got up, got out of bed, dragged a comb across my head;” the song goes. But what if a couple of comb teeth break off? Why, just throw the comb out and buy a new one!

Then it’s downstairs for breakfast. Perhaps you’ll have a microwavable pancake breakfast on a throwaway plastic tray. Or maybe you’ll take along an individually-wrapped pastry and a juice box to eat on the way to school.

Rrring! The school bell signals the start of school. First period English class begins, and you pull out your disposable pen and throwaway spiral notebook.

Later, it’s time for lunch in the school cafeteria. You finish eating today’s entrée and toss the disposable utensils, cup, and plate in the trash. You wipe your mouth on a disposable napkin. You wash your hands, then dry them on a disposable paper towel.

After school, you stop by the mall to buy a new video game. You open the cellophane wrapped around the game, a cardboard sleeve outside the case, and then the sticker sealing the plastic case closed. And so the day goes.

Imagine this scenario played out every day by young Americans across the country. You and every American adult and child generate almost four and one half pounds of waste every day of your life.

Given the hectic lifestyle of many modern families, Americans are unlikely to give up the comfort and convenience of disposables. More municipal solid waste is the price we pay for products that are time saving, convenient, and disposable. Unless we are prepared to make significant changes in our lifestyles and attitudes, we need to ask ourselves, “What are we going to do with all that trash?”

Reducing From the Start

Source reduction should be the first step in any waste management program. Source reduction means reducing the amount of material that enters the waste stream in the first place.

Common sense tells us that reducing the amount of waste we produce is the easiest way to solve America’s mounting garbage problem. It avoids disposal and pollution problems right from the start, and it conserves natural resources and energy. Reducing waste at the beginning means there will be less waste to be recycled, burned, or landfilled.

Containers and Packaging, 2014

Containers and packaging make up 29.7 percent of our trash by weight, and 21.8 percent of the discards in our landfills. They are made of these materials.

Data: Environmental Protection Agency

Trash Around the World, 2013

Data: OECD, most complete data available
The Wrap on Packaging

Packaging—the stuff companies wrap or box consumer products in—has become the target of most source reduction efforts. Why? Because packaging is the single largest product in the waste stream by weight.

Just look at the products lining grocery store shelves. Bread is wrapped in a plastic bag. Soup comes in a can. Cookies are arranged on plastic trays that are slipped inside paper or plastic bags. Bottled beverages are wrapped together in plastic. Sometimes fruits like apples and oranges are arranged on a cardboard or plastic tray then wrapped in more plastic.

Yet packaging serves many useful purposes. The bread wrapper keeps the bread fresh and clean. The soup can keeps the soup fresh for months on grocery store shelves. The cookie tray keeps the cookies from getting crushed. The plastic wrapping around soft drinks makes it easy to grasp six bottles of cola in one hand. The wrapped apples mean less time selecting food. Without a doubt, packaging provides a convenient and sanitary way to store and transport food and other products.

Sometimes, though, packaging is more of a marketing ploy—the purpose being to make the product look bigger and better than its competitor’s. This packaging does not come free. Americans pay a price for all the wrapping and glitter. Sixteen percent of the money ($16 of every $100) your family spends on groceries winds up in the garbage bin!

And, it had better be a big garbage bin! Packaging makes up 29.7 percent of the municipal solid waste stream, or 21.8 percent of discards in our landfills. At first glance, many Americans may think the percentage for containers and packaging is very high. Packaging—particularly food packaging—gets a lot of attention because we bring it into our homes, because we see it in our trash every day, and because it is noticeable.

However, it’s important to consider some of the items we don’t see in our trash, thanks to packaging. For example, a recent study found that residents of Mexico City produce 40 percent more garbage than their American counterparts. One of the reasons is the use of less packaging. Mexican waste contains far more spoiled food than found in U.S. landfills. Indeed, food spoilage in the U.S. averages less than three percent. Thanks to this low spoilage rate, the U.S. has one of the world’s least expensive food supplies.

In less developed countries such as Mexico, where packaging is minimal, food spoilage rates can reach 50 percent. With crude packaging and distribution systems, many parts of the world still have a serious problem with food safety, supply, and spoilage.

Changes in Packaging

There is some good news about packaging. The Environmental Protection Agency—an agency of the Federal Government—reports that manufacturers are reducing the amount of waste in consumer products.

Companies that make consumer products are doing several things to reduce waste. For one, they are redesigning products so they need less packaging. Consumers can now buy fabric softener concentrate in small containers, instead of buying big plastic jugs every time. Concentrated products can reduce packaging by 75 percent.

Second, companies are using fewer materials to package products. Compact discs (CDs) are a good example. CDs were all originally packaged in plastic jewel cases, boxes, and wrapped in cellophane that, all together, was often twice the size of the actual CD. Young people and artists demanded a change. The recording industry responded, and most CDs are packaged in slimmer, folded cardboard packaging. In many cases, eco-friendly versions are actually the cheapest and also made of recycled materials. Many artists decide to only produce and release music in a digital format that can only be downloaded to reduce the use of packaging. When was the last time anyone bought a CD?

In addition, virtually all manufacturers are using less material to make bottles, jars, and cans. The soft drink industry, for example, is making thinner cans and bottles with smaller lids. Today’s two-liter plastic bottles are 25 percent lighter than when they were introduced in 1977. Glass jars are 43 percent lighter than they were in 1970. There are now 34 cans per pound of aluminum, up from 22 in 1972.

Other industries are doing their part, too. Disposable diapers are thinner than before, keeping babies dry with half as much material. Ice cream cartons weigh 30 percent less because of changes to the materials and design. When McDonald’s® made its drinking straws 20 percent lighter, it eliminated one million pounds of solid waste per year. Many restaurants are making the move to straw-less drink containers, or requiring customers to request a straw.

Companies can reduce waste by using less packaging to bring a product to market. Intel® Corporation, for example, changed their individual packaging for network cards, saving 320,000 pounds of plastic a year. The new style also reduced the size of the bulk boxes needed, saving 270,000 pounds of corrugated packaging a year. Finally, because the packages are smaller and lighter, less energy is needed to transport the cards to market.

The benefit of all these efforts by industry is less waste—less waste to put into a landfill, recycle, or burn.
Taking Action

What You Can Do
You can help reduce waste at home by learning basic waste-saving habits. You can buy products that come in concentrated forms or products that use minimal packaging. And you can reuse, repair, recycle, or compost products that would otherwise be thrown away.

Reduce

- Buy the largest size package and products that do more than one thing—for example, shampoos that include conditioners.
- Buy concentrated products or compact packages, such as frozen juices, fabric softeners, and cleaners you mix with water at home.
- Look for products with minimal packaging. You will be using fewer natural resources, and you’ll have less to throw away.
- Leave grass clippings on the ground instead of bagging them when you mow your lawn. Grass clippings decompose quickly, adding nutrients to the soil.
- Go digital: buy music and books online and subscribe to digital magazines.

Reuse

- Buy reusable products such as rechargeable batteries.
- Pass on or donate magazines, catalogues, and books to neighbors, hospitals, schools, nursing homes, or shelters.
- Reuse plastic or glass containers for food storage, or organization of household items.
- Reuse plastic shopping bags, boxes, and lumber.
- Reuse wrapping paper, gift bags, and bows. Use the Sunday comics for wrapping children’s birthday presents.
- Donate your old electronics, such as computers, when you upgrade to a new model.

Repair or Repurpose

- Try to repair broken items before you consider replacement of lawn mowers, tools, vacuum cleaners, and TVs.
- Donate items you can’t repair to local charities or vocational schools.
- Keep appliances in good working order. Properly maintained appliances are less likely to wear out or break and will not have to be replaced as frequently.

Recycle

- Shop for items that are recyclable or are made from recycled materials.
- Recycle newspapers, plastics, glass, and cans.
- Recycle your electronics, computers, laptops, televisions, cell phones, PDAs, chargers, and accessories, where possible. Many retail stores have receptacles for recycling electronics.
- If a recycling program does not exist in your community, work with community officials to help establish one.

Compost

- Compost yard and kitchen waste. Compost makes an excellent fertilizer and improves the soil.
- If there's no room for a compost pile, offer compostable materials to community composting programs or garden projects near you.
Exhibit 2: Source Reduction

Step 1: Learn About Source Reduction

1. Individually, read your informational text and list the important and interesting facts on your individual organizer.
 1-5 points
2. As a group, decide which facts you want to teach others and list them on your group organizer. Make sure you answer these questions:
 - How much waste does each American make every day?
 - What does source reduction mean?
 - Why is packaging a target for source reduction?
 - Why don’t we eliminate packaging all together?
 - What does it mean to reduce, reuse, repair or repurpose, recycle, and compost?
 1-5 points

Step 2: Plan Your Exhibit

1. As a group, make a list of the items you can use to make your exhibit interesting on your group organizer. Here are some suggestions:
 - Make and label boxes with the correct weight inside to show the amount of waste generated each day in different countries.
 - Bring in samples of items that have been reused or repaired.
 - Make a graph showing the difference in weight between today’s glass, plastic, and aluminum drink containers and those made in previous years.
 1-5 points

Step 3: Use Your Talent and Write Your Script

1. As a group, decide who will do which jobs and list them on your group organizer. You can have more than one person working on each job. Be sure to cover the following jobs:
 - Script Writer
 - Display Creator(s)
 - Materials Collector
 - Presenter
 1-5 points
2. Write a three minute script using the list of important facts your group generated.
 1-5 points

Step 4: Create Your Exhibit

1. Create an interesting display with pictures, graphs, and hands-on materials. Make sure the display and the script cover the same information.
 1-5 points
2. Practice the script so that you won’t have to read it. Use note cards with the important facts listed on them.

Step 5: Teach Others

1. Give a presentation of your exhibit to others.
 1-5 points

Total Points: __________
Exhibit 3: Introduction to Recycling

What is Recycling?
Recycling means using something again. Newspapers can be used to make new newspapers. Aluminum cans can be used to make new aluminum cans. Glass jars can be used to make new glass jars. There are several reasons why recycling makes sense. Let’s take a look.

- Recycling Saves Landfill Space
Americans are producing more waste with each passing year, over half of which is hauled off and buried in landfills. What's wrong with that? It's expensive and usually controversial to dig new landfills or to build new incinerators. Recycling is one way to reduce the amount of waste that is landfilled.

- Recycling Reduces the Cost of Waste Disposal
Getting rid of trash isn't a free proposition. Garbage trucks must pay to dump their waste at a landfill. The payment is called a tipping fee, and it is based on the weight or volume of the garbage.

Tipping fees vary in different areas. The average cost to dump one ton of waste is nearly $49. Recycling reduces landfill costs because less waste is landfilled. In 2014, recycling and composting diverted 89.4 million tons of material from landfills.

- Recycling Saves Energy
It almost always takes less energy to make a product from recycled materials than it does to make it from new materials. Using recycled aluminum scrap to make new aluminum cans, for example, uses 95 percent less energy than making aluminum cans from bauxite ore, the raw material used to make aluminum.

One exception to the rule is plastics. Sometimes it takes more energy to recycle plastic than it does to use all new materials to produce the same product.

- Recycling Saves Natural Resources
Natural resources are riches provided courtesy of Mother Nature. Natural resources include land, plants, minerals, and water.

By using materials more than once, we conserve natural resources. In the case of paper, recycling saves trees and water. Preventing one ton of paper waste by recycling it can save 15-17 mature trees and 7,000 gallons of water.

- Recycling Reduces Air and Water Pollution
Using aluminum scrap instead of bauxite ore to make new aluminum products cuts air and water pollution by 95 percent. If you want to do something for the environment, recycle those aluminum cans!

- Recycling Creates Jobs
According to the Environmental Protection Agency, recycling and reuse supports about five times as many jobs as waste disposal. Recycling requires businesses that collect, haul, and process recyclables, as well as businesses that manufacture products from recycled materials. People employed in the recycling industry may be material sorters, truck drivers, sales representatives, process engineers, or chemists. The National Recycling Coalition reports that recycling and reuse supports 1.1 million jobs in the U.S.

Where to Recycle
Many people think the United States should recycle more of its waste; however, even the experts disagree on the best way to go about it. Should communities pick up residents’ recyclables? Or is this practice too expensive for over-stretched city budgets? Does community recycling deprive the civic organizations (Boy Scouts, high school groups) of the opportunity to raise money for their clubs? Let's take a look at some ways recyclables can be collected.

- Curbside Collections
Residents leave their recyclables at the curb or in some other designated place where regular trash is picked up. Communities may require residents to sort their recyclables—such as aluminum cans, newspapers, glass—into separate containers or they may be mingled together.

Curbside collection programs boast the highest recycling rates. Some experts say curbside recycling nationwide could reduce the amount of solid waste by 15 to 25 percent.
- **Drop-Off Centers**
In some areas, people bring their recyclables to collection centers. This saves the community the cost of curbside collection but relies on residents willing to drive to the center for little or no payment. In many cases, residents must even crush, sort, and clean them.

- **Reverse Vending Machines**
In many places, there are machines that accept used beverage containers and reimburse the depositor on the spot. Reverse vending machines are convenient because they are usually located inside or outside grocery stores.

- **Deposits**
Several states impose a five or ten-cent deposit on returnable bottles and cans. Consumers get their deposits back when they return the containers to the store for recycling. These so-called "bottle-bill" states originally passed deposit laws to combat litter problems. Now they are one step ahead of the game. Deposits help solid waste disposal problems, too.

- **Pick-Up by Volunteers**
This is recycling the old-fashioned way. Community groups, such as church groups, the Boy Scouts, and even schools, will collect recyclables to raise money for their clubs. These groups usually focus on aluminum and paper, because their scrap value is higher than other recyclables.

Keys to Success
No one questions the importance of recycling. Yet the experts debate whether Americans should be asked to recycle their waste (a voluntary program), or whether they should be required by law to recycle their waste (a mandatory program).

- **Mandatory Recycling**
Some communities have passed laws or ordinances mandating that citizens recycle at least some of their trash. Typically, residents in these communities separate their newspaper, aluminum, glass, and other recyclables from the rest of their trash. Some communities have single-stream programs, where sorting is unnecessary. Other communities may only require that newspapers be separated for recycling. Residents who do not comply with local recycling laws may be fined, or their trash may not be picked up.

In an effort to encourage recycling, many communities have adopted pay-as-you-throw programs. Residents are charged by the number of trash containers they set out for collection.

In Seattle, Washington, the amount residents pay for garbage pick-up is based on the size of their garbage cans. Usually, the cost of pick-up for one small 12-gallon can is $22.85 per month, while the cost for two large 32-gallon cans is $72.90 per month. Residents who are serious about recycling end up paying far less for their garbage disposal.

- **Voluntary Recycling**
Under a voluntary recycling program, residents are encouraged to recycle their waste, but they are not required to do so. Residents who choose not to recycle their waste are not fined or penalized in any way. Some cities have even instituted recycling rewards for residents who recycle.

Are mandatory programs better at recovering recyclables than voluntary programs? The statistics show that mandatory programs are more successful.

In voluntary programs, about one-third of the community recycles. In mandatory programs, about one-half of the community recycles. Why don't more people recycle under mandatory recycling programs?

Recycling Fever
Recycling programs are growing across the United States. The media and the environmental movement have focused attention on our mounting waste problem. Now recycling has become the ‘in’ thing to do. Americans recycled just six percent of their waste in 1960 and 16 percent in 1990, but we recycle almost 35 percent of our waste today.

![Recycling Fever Chart](chart.png)

Data: Environmental Protection Agency
The answer is simple. Enforcing the laws is impractical. It means going from trash can to trash can to find out who is recycling. In 2006, Seattle began enforcing its recycling program. Residential garbage cans that contain more than 10 percent recyclables are not emptied, but left at the curb full of garbage. Tags are left on the garbage cans saying why they were not emptied and explaining how to separate out the recyclables for pick-up the following week. Business owners who do not recycle can receive fines.

In any case, new studies suggest that successful recycling programs are those that make it easy for people to recycle. The most successful recycling programs provide residents with special containers for sorting their waste and collect the recyclables weekly along with the rest of the trash. Ease and convenience are the keys to success.

When To Recycle
Recycling always makes sense, right? No, not always. Recycling sounds great, but recycling costs money and uses energy, too. Recyclables have to be collected, sorted, shipped to manufacturing plants, and then made into new products.

Collecting recyclables is only the first part of the story. We can be good citizens and recycle our trash, but if nobody wants to buy the recyclables, we haven’t accomplished much. In other words, somebody has to want to buy old newspapers because it is cheaper to use them to make a new paper product than it is to use virgin paper stock.

What happens when nobody wants to buy recyclables? The East Coast experienced this problem in the early 1990s when there was an overabundance of old newspapers. Communities on the East Coast collected newspapers for recycling, but nobody wanted to buy them. The newspapers sat around in warehouses waiting to get a second life. That is not recycling. Recycling means to make something old into something new. Collection is only the first step. There is good news for the East Coast, though. Thanks to consumer demand for recycled paper products, the excess of newspaper has disappeared. Today, many recyclers are eager to get their hands on as much used paper as possible.

Recycling Guide

<table>
<thead>
<tr>
<th>Material</th>
<th>Can Be Recycled</th>
<th>Can’t Be Recycled</th>
<th>How To Do It</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass</td>
<td>jars, bottles, clear, green, amber, CFL bulbs</td>
<td>dishes, pyrex, crystal</td>
<td>Rinse, remove lids & separate by color. Labels can stay.</td>
</tr>
<tr>
<td>Paper</td>
<td>newspapers, boxes, egg cartons, phone books, white office paper</td>
<td>waxed, glued, plastic, or foil coated</td>
<td>Keep clean and dry.</td>
</tr>
<tr>
<td>Aluminum</td>
<td>all aluminum—cans, pie pans, foil wrap, old windows, lawn furniture</td>
<td>All is recyclable. (Aluminum does not stick to a magnet).</td>
<td>Rinse and crush.</td>
</tr>
<tr>
<td>Steel</td>
<td>steel (tin) food and drink cans, cast iron, sheet metal</td>
<td>All is recyclable. (Steel sticks to a magnet.)</td>
<td>Rinse, crush if possible. Labels can stay.</td>
</tr>
<tr>
<td>Plastics</td>
<td>all plastics (usually milk jugs and 2-liter bottles)</td>
<td>Check with your recycler.</td>
<td>Rinse & remove lids. Labels can stay.</td>
</tr>
</tbody>
</table>

Things We Recycle, 2014

<table>
<thead>
<tr>
<th>Material</th>
<th>Percentage of Material Recycled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto (Lead-Acid) Batteries</td>
<td>98.9%</td>
</tr>
<tr>
<td>Newspapers/Mechanical Papers</td>
<td>68.2%</td>
</tr>
<tr>
<td>Steel Cans</td>
<td>70.7%</td>
</tr>
<tr>
<td>Yard Trimming</td>
<td>61.1%</td>
</tr>
<tr>
<td>Aluminum Cans</td>
<td>55.1%</td>
</tr>
<tr>
<td>Tires</td>
<td>40.5%</td>
</tr>
<tr>
<td>Glass Containers</td>
<td>32.5%</td>
</tr>
<tr>
<td>HDPE Natural Bottles</td>
<td>29.5%</td>
</tr>
<tr>
<td>PET Bottles and Jars</td>
<td>31.2%</td>
</tr>
<tr>
<td>Major Appliances</td>
<td>58.3%</td>
</tr>
<tr>
<td>Corrugated Boxes</td>
<td>89.5%</td>
</tr>
<tr>
<td>Clothing and Foot Wear</td>
<td>15.6%</td>
</tr>
</tbody>
</table>

Data: Environmental Protection Agency
Exhibit 3: Introduction to Recycling

Step 1: Learn About Recycling
1. Individually, read your informational text and list the important and interesting facts on your individual organizer.
 1-5 points
2. As a group, decide which facts you want to teach others and list them on your group organizer. Make sure you answer these questions:
 - What is recycling?
 - What is closed loop recycling?
 - What are some benefits to recycling?
 - How do different communities recycle?
 - What materials can be recycled?
 1-5 points

Step 2: Plan Your Exhibit
1. As a group, make a list of the items you can use to make your exhibit interesting on your group organizer.
 Here are some suggestions:
 - Have an empty soda can and a full one to show closed loop recycling. Have an empty plastic bottle and a plastic flower pot to show non-closed loop recycling.
 - Make a graph showing how much Americans have recycled over the years.
 - Have samples of items that can be recycled.
 1-5 points

Step 3: Use Your Talent and Write Your Script
1. As a group, decide who will do which jobs and list them on your group organizer. You can have more than one person working on each job. Be sure to cover the following jobs:
 - Script Writer
 - Display Creator(s)
 - Materials Collector
 - Presenter
 1-5 points
2. Write a three minute script using the list of important facts your group generated.
 1-5 points

Step 4: Create Your Exhibit
1. Create an interesting display with pictures, graphs, and hands-on materials. Make sure the display and the script cover the same information.
 1-5 points
2. Practice the script so that you won’t have to read it. Use note cards with the important facts listed on them.

Step 5: Teach Others
1. Give a presentation of your exhibit to others.
 1-5 points

*Total Points: ___________________
Exhibit 4: Recycling Plastics

It’s Plastic!

Americans seem to have a love–hate relationship with plastic. We look down on plastic imitations of natural products and fibers. They are cheap, we say. We all want real leather, for example, rather than imitation plastic.

Yet we are using plastic products more than ever before. We cover our food in plastic wrap, drink coffee from Styrofoam® cups, wear clothes made from man-made fibers like nylon, polyester, and rayon, and even buy our plastic things with plastic credit cards! We use plastic hundreds of times every day.

What Is Plastic?

Plastic is a versatile product. Plastic can be flexible or rigid, transparent or opaque. It can look like leather, wood, or silk. It can be made into toys or heart valves. Altogether there are more than 10,000 different kinds of plastics.

The basic raw materials for plastic are petroleum and/or natural gas. These fossil fuels are sometimes combined with other elements, such as oxygen or chlorine, to make different types of plastic.

Plastics are not the waste and energy culprits that some people think they are. Plastics are really very energy efficient. It takes 20–40 percent less energy to manufacture plastic grocery bags than paper ones. And, since plastics are lightweight and take up so little space, it is much more efficient to transport them. It takes seven trucks to deliver the same number of paper bags as can be carried in one truckload of plastic bags.

Disposing of Plastic

Is plastic trash choking the Earth with Styrofoam® cups and fast-food plates? Not really. That’s just another misconception.

By weight, plastics make up about 12.9 percent of America’s municipal solid waste. In comparison, paper makes up about 26.5 percent. Of course, plastics are generally very lightweight. Plastics account for 17.8% of waste sent to landfills.

Putting plastics into landfills is rarely the best disposal method. There are two better alternatives, recycling and incineration.

These methods recover some of the value from the plastic. Recycling recovers the raw material, which can then be used to make new plastic products. Incineration recovers the chemical energy, which can be used to produce steam and electricity.

Landfilling plastics does neither of these things. The resource and energy value of landfilled plastic is buried forever.

Recycling Plastics

Recycling plastics is easy. First, you should learn what types of plastics can be recycled and only give your collector those types of plastics. Resist the temptation to slip plastics that recyclers don’t want into the recycling bin.

Plastics have different formulations and should be sorted before they are recycled to make new products. Mixed plastics can be recycled, but they are not as valuable as sorted plastics because the recycled plastic’s physical properties, such as strength, may vary with each batch.

Decoding Plastics

<table>
<thead>
<tr>
<th>PET or PETE</th>
<th>Polyethylene Terephthalate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-liter beverage bottles, mouthwash bottles, boil-in-bag pouches</td>
<td></td>
</tr>
<tr>
<td>HDPE</td>
<td>High Density Polyethylene</td>
</tr>
<tr>
<td>Milk containers, trash bags, detergent bottles</td>
<td></td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinyl Chloride</td>
</tr>
<tr>
<td>Cooking oil bottles, pipes, packing around meat</td>
<td></td>
</tr>
<tr>
<td>LDPE</td>
<td>Low Density Polyethylene</td>
</tr>
<tr>
<td>Produce bags, food wrap, bread bags</td>
<td></td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>Yogurt containers, shampoo bottles, straws, margarine tubs, diapers</td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td>Polystyrene</td>
</tr>
<tr>
<td>Hot beverage cups, egg cartons, meat trays, CD cases</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>All other types of plastics or packaging made from more than one type of plastic</td>
</tr>
</tbody>
</table>
Today, Americans recycle approximately 10 percent of all the plastics produced in this country. Why aren't we recycling more plastics? There is no simple answer.

Energy to Burn

Because plastics are made from fossil fuels, you can think of them as another form of stored energy. Pound for pound, plastics contain as much energy as petroleum or natural gas, and much more energy than other types of garbage. This makes plastic an ideal fuel for waste-to-energy plants.

Waste-to-energy plants burn garbage and use the heat energy released during combustion to make steam or electricity. They turn garbage into useful energy.

So, should we burn plastics or recycle them? It depends. Sometimes it takes more energy to make a product from recycled plastics than it does to make it from all-new materials. If that’s the case, it makes more sense to burn the plastics at a waste-to-energy plant than to recycle them.

Burning plastics can supply an abundant amount of energy, while reducing the cost of waste disposal and saving landfill space.

Paper or Plastic?

A paper cup or a plastic cup? Should you choose paper cups over plastic cups since the paper cups are made from natural wood products and will degrade? Maybe not.

A study by Canadian scientist Martin Hocking shows that making a paper cup uses as much petroleum or natural gas as a foam cup. Plus, the paper cup uses wood pulp. The Canadian study said, “The paper cup consumes 12 times as much steam, 36 times as much electricity, and twice as much cooling water as the plastic cup.” And because the paper cup uses more raw materials and energy, it also costs 2.5 times more than the plastic cup.

But the paper cup will degrade, right? Probably not. Modern landfills are designed to inhibit degradation so that toxic wastes do not seep into the surrounding soil and groundwater. The paper cup will still be a paper cup 20 years from now.

Another Look

Today, Americans recycle approximately 10 percent of all the plastics produced in this country. Why aren’t we recycling more plastics? There is no simple answer.

Part of the issue in recycling plastics is the cost. To remain competitive in the global marketplace, manufacturers usually choose the cheapest option for making products. New plastic resin, or virgin resin, often costs less than recycled plastic. Until recently, when the U.S. experienced a series of massive hurricanes, virgin resin was cheaper than recycled plastic. Due to the hurricanes, supplies of oil and natural gas—the building blocks of virgin resins—became limited and more expensive. Prices for virgin resin soared, and the demand for recycled plastics increased. Another important consideration is human behavior. Surveys conducted by Proctor & Gamble and other companies show that while most people expect their plastic to be recycled, they won’t go out of their way or pay a few cents more to buy products made of recycled plastic. Consumers need to create a demand by purchasing only recycled plastics. As demand grows, the incremental cost will decrease.

There are success stories in plastics recycling, nonetheless. Soft-drink bottles made of polyethylene terephthalate (PET) can be melted down and made into carpet, t-shirts, stuffing for ski jackets, or molded into bottles again.
Steps in Recycling Plastics

1. Inspection
 Workers inspect the plastic trash for contaminants like rock and glass, and for plastics that the plant cannot recycle.

2. Washing and Chopping
 The plastic trash is washed to remove any contaminants and chopped into flakes.

3. Flotation Tank
 If mixed plastics are being recycled, they are sorted in a flotation tank, where some types of plastics sink and others float, based upon their density.

4. Drying
 The plastic flakes are dried in a tumble dryer.

5. Melting
 The dried flakes are fed into an extruder in which heat and pressure melt the plastic. Different types of plastics melt at different temperatures.

6. Filtering
 The molten plastic is forced through a fine screen to remove any contaminants that remain after the washing process. The molten plastic is then formed into long strands.

7. Pelletizing
 The strands are cooled in water, then chopped into uniform pellets. Manufacturing companies buy the plastic pellets from recyclers to make new products. Recycled plastics also can be made into flower pots, lumber, and carpeting.

Degradable Plastic

Degradable plastics are made with five percent corn starch or vegetable oil. The idea is that hungry bacteria will devour the starch or oil in the plastic, causing the plastic to disintegrate into a fine dust. That is the idea, but does it really work?

Both environmentalists and plastics manufacturers say it does not. Nothing degrades quickly in a modern landfill, not even organic wastes like paper and food scraps. Thus, there is no reason to think that the corn starch in biodegradable plastics will disappear overnight either. Modern landfills are designed to inhibit degradation, not promote it. The idea is to keep wastes in, so landfill contaminants do not seep into the surrounding environment. In addition, biodegradable plastics cannot be recycled because the starch or oil additive compromises the quality of recycled plastics.

Photodegradable plastics are a different matter. They use no organic additives. They are made with a special type of plastic that breaks down and becomes brittle in the presence of sunlight. Of course, that means photodegradable plastics do not break down when they are covered by leaves or snow, or when they are buried in a landfill.

The maker of the plastic six-ring carrier that is used to attach six cans of soda, juice, and other beverages, says its photodegradable carrier loses 75 percent of its strength when exposed to sunlight after just a few days, and totally disintegrates within a matter of weeks. This means if an animal were to become entangled in the six-ring carrier, it could rip through the weakened pack to free itself. Since photodegradable plastics contain no organic additives, they can also be recycled, unlike their biodegradable cousins.
Step 1: Learn About Recycling Plastics
1. Individually, read your informational text and list the important and interesting facts on your individual organizer.
 1-5 points
2. As a group, decide which facts you want to teach others and list them on your group organizer. Make sure you answer these questions:
 ▪ What is plastic?
 ▪ How much plastic is generated and landfilled in the waste stream?
 ▪ How is plastic recycled?
 ▪ Should we always recycle plastics?
 ▪ What is degradable plastic?
 1-5 points

Step 2: Plan Your Exhibit
1. As a group, make a list of the items you can use to make your exhibit interesting on your group organizer.
 Here are some suggestions:
 ▪ Have samples of items made from the different types of plastics.
 ▪ Make a diagram showing the steps to recycling plastic.
 ▪ Have sample plastic and paper grocery bags.
 1-5 points

Step 3: Use Your Talent and Write Your Script
1. As a group, decide who will do which jobs and list them on your group organizer. You can have more than one person working on each job. Be sure to cover the following jobs:
 ▪ Script Writer
 ▪ Display Creator(s)
 ▪ Materials Collector
 ▪ Presenter
 1-5 points
2. Write a three minute script using the list of important facts your group generated.
 1-5 points

Step 4: Create Your Exhibit
1. Create an interesting display with pictures, graphs, and hands-on materials. Make sure the display and the script cover the same information.
 1-5 points
2. Practice the script so that you won’t have to read it. Use note cards with the important facts listed on them.
 1-5 points

Step 5: Teach Others
1. Give a presentation of your exhibit to others.
 1-5 points

Total Points: ____________________
Exhibit 5: Recycling Metals

Precious Metals

Precious metals—such as gold, silver, brass, and copper—are so valuable that they are rarely thrown away. They do not create a waste disposal problem, but aluminum and steel do.

Aluminum and Steel

Americans use hundreds of millions of metal cans every day. What should we do with this metal waste? Should we burn it in waste-to-energy plants? Should we landfill it? Or should we recycle it?

After source reduction (using less aluminum to make a can, for example), recycling is the best way to deal with aluminum and steel waste.

Burning metal trash in waste-to-energy plants is not the best option because, unlike paper and plastics, metals do not provide any heat energy. Instead, aluminum melts and steel just gets very hot.

Magnets can be used to collect steel scrap at waste-to-energy plants, though, and then the scrap can be shipped to steel plants for recycling.

Landfilling is usually not a good alternative either. Aluminum, in particular, is so valuable as a scrap material that it simply does not make sense to bury it. And yet millions of aluminum cans are thrown in the trash every year to be buried in landfills.

Recycling Aluminum

Like most metals, aluminum is an ore. An ore is a mineral that is mined for a valuable material contained within it. Bauxite, a reddish clay-like ore, is rich in aluminum compounds.

The tricky thing about aluminum—unlike copper, iron, and other common metals—is that it only exists in combination with other elements, usually oxygen. Combined with oxygen, aluminum forms an extremely hard material known as alumina.

To free the aluminum, the alumina must be stripped or reduced of its oxygen. This process is done at a reduction plant, or smelter.

The alumina is put into large pots at the reduction plant. First, it is dissolved in a molten (or liquid) salt. Then, a powerful electric current is run through the liquid to separate the aluminum from the oxygen. The molten aluminum sinks to the bottom of the pots. The reduction process requires a tremendous amount of electrical energy.

Aluminum Can Recycling Rate

<table>
<thead>
<tr>
<th>Year</th>
<th>Recycling Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>37.6%</td>
</tr>
<tr>
<td>1990</td>
<td>63.9%</td>
</tr>
<tr>
<td>2000</td>
<td>54.6%</td>
</tr>
<tr>
<td>2010</td>
<td>49.6%</td>
</tr>
<tr>
<td>2014</td>
<td>55.1%</td>
</tr>
</tbody>
</table>

Data: Environmental Protection Agency

Old Cans To New Cans

After you have done your part by taking your old aluminum cans to a recycling center or putting them in the recycling bin at the curb for pick-up, what happens next?

The old aluminum cans are taken to an aluminum reclamation plant. The cans are shredded into potato chip sized pieces and fed into a melting furnace. The molten aluminum is gradually hardened into rectangular slabs, called ingots, and then formed into thin sheets of aluminum.

The metal from recycled aluminum cans is usually made into new aluminum cans. This is called closed loop recycling because the old cans are turned into the same thing again. Aluminum beverage containers can be recycled into new cans and put back onto store shelves within 60 days!

Aluminum can also be recycled over and over again. It does not lose its quality, and recycling it saves energy every time.

The Aluminum Can Cycle

1. You enjoy your favorite beverage in an aluminum can.
2. You are a good “sort.” You put the aluminum can into a bag or bin for recycling.
3. A recycling company takes the cans to a recycling plant. The aluminum is shredded and melted.
4. The molten aluminum is gradually hardened into ingot form.
5. The ingots are made into flat sheets that companies can buy.
6. The aluminum sheets are made into new cans, and the cycle begins again.
Recycling aluminum makes sense because it saves energy—a lot of energy. Today, recycling one ton of aluminum saves the same amount of energy as 21 barrels of oil, or 1,024 gallons of gasoline!

As you probably know, energy is expensive! Just take a look at your parents’ electric bill, or note the price of a gallon of gasoline the next time you see a gas station. Making a pound of aluminum from bauxite ore (a pound is about the weight of 34 aluminum beverage cans) takes 7.5 kilowatt-hours of electricity.

Making aluminum from recycled aluminum scrap, on the other hand, takes only five percent of the energy—just one-third of a kWh. Recycling four aluminum cans saves as much energy as the energy in one cup of gasoline. That is also why used aluminum has a high scrap value. Aluminum manufacturers save energy as well as money using recycled aluminum, so they will pay you for your old cans—about a penny for every can.

Perhaps more than any other type of garbage, putting aluminum in a landfill is like burying money. Why do you think the rate of recycling aluminum cans has declined in recent history? Why might it be increasing again?

Recycling Steel

Steel is the most recycled material in the U.S. Steel dominates the recycling mix because every year the steel industry recycles huge amounts of steel scrap from cars, appliances, and torn-down buildings and bridges. Today, all steel products are made with some recycled steel.

In 1998, the amount of steel that was recycled decreased for the first time in many years. Foreign countries were selling their steel so cheaply that the recycling industry suffered a decline. Today, it is increasing again.

You can do your part at home by recycling steel cans. A steel can is the can your soup comes in, or your dog’s food, or your mom’s coffee, or the whipped cream you squirt on top of an ice-cream sundae. In fact, most food containers are made of steel. You have probably heard many people call a steel can a tin can. Steel cans are often called tin cans because they are usually coated with a thin layer of tin. Tin protects the food that is stored in the can.

The ABCs of Steel

Steel and aluminum are both mined from ores, and are made in a similar way. The essential ingredient in steelmaking is iron ore. Iron ore is plentiful, but we cannot use it as it occurs in nature. Iron is usually combined with oxygen, or with other elements, like carbon and sulfur. We must smelt the iron ore—strip or reduce it of its oxygen—to get to the iron.

It takes a great deal of energy to reduce iron oxides. An oxide is a compound with oxygen and some other element. The reduction takes place in a very hot blast furnace. A chemical reaction takes place in the blast furnace, and the iron is freed from the oxygen. This free iron (called pig iron by steelmakers because it forms a pattern that looks like tiny piglets surrounding their mother) is used to make steel.

Steel recycling saves a lot of energy. It is more energy efficient to use steel scrap to make new steel products than to mine the iron ore and smelt it in a blast furnace. It takes about 75 percent less energy to make steel from recycled materials than it does from iron ore. That’s why today’s steelmakers use steel scrap to make new steel products.
Step 1: Learn About Recycling Metals

1. Individually, read your informational text and list the important and interesting facts on your individual organizer. 1-5 points

2. As a group, decide which facts you want to teach others and list them on your group organizer. Make sure you answer these questions:
 - Why should aluminum and steel be recycled?
 - How are aluminum and steel made?
 - How are aluminum and steel recycled?
 - How much energy is saved by recycling aluminum and steel?
 - How can you separate aluminum and steel cans? 1-5 points

Step 2: Plan Your Exhibit

1. As a group, make a list of the items you can use to make your exhibit interesting on your group organizer. 1-5 points

 Here are some suggestions:
 - Have an aluminum can, a steel can, and a magnet.
 - Have 25 aluminum cans and a measuring cup. Fill the cup with fake gasoline (rubbing alcohol, flat cherry 7-Up, or water). Ask the guests how many cans would need to be recycled to equal the energy in the cup of gasoline.
 - Make a graph showing how much steel and aluminum are recycled in the U.S.

Step 3: Use Your Talent and Write Your Script

1. As a group, decide who will do which jobs and list them on your group organizer. You can have more than one person working on each job. Be sure to cover the following jobs:
 - Script Writer
 - Display Creator(s)
 - Materials Collector
 - Presenter

2. Write a three minute script using the list of important facts your group generated. 1-5 points

Step 4: Create Your Exhibit

1. Create an interesting display with pictures, graphs, and hands-on materials. Make sure the display and the script cover the same information. 1-5 points

2. Practice the script so that you won't have to read it. Use note cards with the important facts listed on them.

Step 5: Teach Others

1. Give a presentation of your exhibit to others. 1-5 points

Total Points: _______________
Exhibit 6: Recycling Paper and Glass

Recycling Paper

What is the number one material in the solid waste stream? Before you say plastics, look around your classroom. What do you see? Posters? Notebooks? Cardboard boxes? Textbooks? Paper is everywhere!

Paper is the number one material that we throw away. For every 100 pounds of trash we throw away, 27 pounds is paper. The good news is: Americans do recycle paper. Of the 68.6 million tons of paper we generated in 2014, 64.7 percent of it was recycled. However, 14.3 percent of our paper waste still made it into landfills.

Paper has many forms. It can be glossy or ragged, thin or thick. It can be the stuff of newspapers or the stuffing of diapers. Most paper products are made from trees that have been cut and pulped, though paper can also be made from old cloth or grass.

According to the American Forest and Paper Association, nearly 80 percent of America’s paper mills are designed to use paper collected in recycling programs. They depend on paper recycling to supply the raw materials they need to make new paper. Manufacturing new paper products from recycled paper uses 40 percent less energy than making paper from virgin wood pulp.

How Paper Is Made

Papermaking uses one of America’s abundant, natural, renewable resources—trees! The first step in papermaking is harvesting the trees. Paper companies plant trees specifically for papermaking, much like an apple farmer grows apple trees to produce apples. If one tree is cut down for paper, another is planted to replace it.

After the trees are harvested, they are delivered to a paper mill. Paper mills use every part of the tree so nothing is wasted. The bark and roots are burned and used for energy to run the paper mill.

The rest of the tree is chopped into small chips for pulping. Pulping is a chemical process that separates the wood fibers from lignin and other wood parts.

Pulp is the soft, spongy part of a tree. Lignin is the glue that holds a tree together. If lignin is left in a paper product, the paper turns yellow and brittle when it’s exposed to light. You have probably noticed that newspapers turn yellow very quickly. Lignin is usually left in newsprint, since newspapers are only meant to last a day or so.

After pulping, paper is the color of grocery bags. High quality papers are whitened with chlorine bleach and sometimes coated with clays and adhesives to give them a glossy finish.

Pulp, paper, and wood product mills need a lot of energy to produce paper. They generate, on average, 65 percent of their energy needs on site by burning wood scraps that cannot be used to make paper. The rest of the energy is purchased from local power companies or generated on site by the mill using other energy sources.

Recycled Paper

Recycled paper is made from waste paper, usually mixed with fresh wood pulp. If the paper contains ink, the paper must be deinked. Deinking also removes fillers, clays, and fiber fragments.

Almost all paper can be recycled today, but some types are harder to recycle than others. Papers that are waxed, pasted, or gummed—or papers that are coated with plastic or aluminum foil—are usually not recycled because the process is too expensive.

Even papers that are recycled are not usually recycled together. Waste papers should be sorted. High-grade papers with long fibers, such as office and resume paper, is recycled separately from low-grade papers with short fibers, such as newspaper.

Different grades of paper are recycled into different types of new products. Old newspapers are usually made into new newsprint, egg cartons, or paperboard. Old corrugated boxes are made into new corrugated boxes or paperboard. High-grade white office paper can be made into almost any new paper product—stationery, newsprint, or paper for magazines and books.

Some recyclers may ask you to remove the glossy inserts that come with newspapers. The newsprint and glossy inserts are different types of paper. Glossy inserts have a heavy clay coating that some paper mills cannot accept.

Not Always Recyclable

Unlike most other recyclables, paper cannot be recycled over and over again. Eventually the fibers become too weak and short to be used again. That is why virgin paper fiber is usually mixed with recycled paper when new paper products are made. Most corrugated boxes contain around 35 percent recycled content.

Data: EPA
Saving Energy

So does paper recycling save energy? Yes it does. A paper mill uses 40 percent less energy to make newspaper from recycled paper than it does to make newspaper from fresh lumber. However, a recycling mill may consume more energy from fossil fuels than a paper mill.

Paper mills generate much of their energy from waste wood, but recycling mills purchase most of their energy from local power companies or use on-site cogeneration facilities.

Making recycled paper does require fewer chemicals and bleaches than making all-new paper, and spent chemicals are often burned to produce energy for use at the plant. Although recycled paper is less polluting than paper made from wood fiber, both processes produce different by-products.

Paper mills may emit more sulfur dioxide, but recycling mills may produce more sludge. Deinking at Cross Pointe's Miami, Ohio, mill results in 22 pounds of sludge for every 100 pounds of wastepaper recycled.

Paper recycling does mean fewer trees are used to make paper, but all-new paper is almost always made from trees specifically grown for papermaking. A tree harvested for papermaking is replaced by five others, so the cycle continues.

“We are not talking about the rain forest or old growth in the Pacific Northwest,” says Champion Paper’s Martin Blick. “Most of the trees cut for paper come from fifth or sixth generation pulp-wood forests.”

Always Recycle Paper?

Between 1990 and 1993, there was an excess of old newspapers on the East Coast. People in some communities diligently collected newspapers for recycling, only to have stacks of them grow and grow until they had to pay someone to haul them away—sometimes to a landfill!

In these situations, it may be better to burn the paper in a waste-to-energy plant than to recycle. The heat energy produced from burning the paper can be used to make steam and electricity.

Today, the demand for recycled paper exceeds the supply. Paper companies are eager to get their hands on as much used paper as possible.

America’s forest and paper companies, known as the American Forest and Paper Association (AF&PA), are committed to sustainable forests, increasing industry energy efficiency, reducing greenhouse gas emissions, and increasing paper recovery for recycling rates. By setting and achieving incremental paper recovery for recycling goals since 1990, recovery in the U.S. has doubled. The AF&PA has set a new goal of 70 percent recovery by 2020.

Where Recovered Paper Goes

Americans are recovering paper goods (recycling) at a record-high rate. So how are we using the recovered paper? In 2016, 33.7 percent of recovered paper went to produce container board, the material in corrugated boxes. Another 11.8 percent went to produce box board, the material in folding boxes and gypsum wallboards. The majority of our recovered paper, 40 percent, is exported to China and other nations.

Conserving Resources and Energy Through Paper Recycling

Recycling one ton of paper would:

- Save 7,000 Gallons of Water
- Save 15-17 Trees
- Save enough energy to power the average American home for six months
- Reduce greenhouse gas emissions by one metric ton of carbon equivalent (MTCE)

Data: EPA
The World Of Glass

Glass is used to package many food products: juices, jellies, vegetable oils, baby food, and so on. Glass makes up 4.4 percent of the municipal solid waste stream by weight, and is 5.0% of waste sent to landfills.

History of Paper

At one time if someone wanted to leave a message for the world, he had to use a cave wall, a stone tablet, or an animal bone. Now people have their choice of a wide variety of paper products.

When paper was first invented in China in 105 A.D., it was made mostly from rags, linen, or bamboo.

In 1719, a Dutch naturalist noticed that wasps’ nests were made of a material that resembled paper. He observed the wasps chewing wood filaments and mixing them with their own saliva. This gave him the idea that paper could be made from wood fiber and led to the growth of the papermaking industry.

How to Recycle Glass

Preparing your used glass containers for recycling is easy. All you need to do is remove their lids or caps and rinse the containers in water. You don’t need to scrub off the labels, since they will burn up when the glass is melted down for recycling.

Some recyclers ask you to sort glass containers by color—clear, green, or amber (golden brown). Once glass has been colored, the color cannot be removed. That means a maker of clear glass jars cannot use colored cullet. Why do some manufacturers package their foods and beverages in green or amber colored glass containers? The colored glass protects some sensitive foods and beverages from light.

You cannot recycle all glass products. Ceramics, some light bulbs, glass mirrors, window panes, and dishes are not made with the same materials as glass jars and bottles, so they should not be mixed in with glass recyclables. Still, it’s the bottles and jars that we throw away every day, not the light bulbs and dishes, that make up most of our trash.

Today, we only recycle 26.0 percent of the glass material in our municipal solid waste stream. One area where we can recycle more is in glass containers and packaging. We currently recycle only 32.5 percent of beverage bottles and other food bottles and jars that we use. The rest end up in our landfills.

Glass Recycling Rate, 2014

Data: Environmental Protection Agency
STUDENT GUIDE TO CREATING A MUSEUM EXHIBIT

Exhibit 6: Recycling Paper and Glass

Step 1: Learn About Recycling Paper and Glass
1. Individually, read your informational text and list the important and interesting facts on your individual organizer. 1-5 points
2. As a group, decide which facts you want to teach others and list them on your group organizer. Make sure you answer these questions:
 - What is the number one material in the solid waste stream?
 - How is paper recycled?
 - Can paper always be recycled?
 - How is glass recycled?
 - Can glass always be recycled? 1-5 points

Step 2: Plan Your Exhibit
1. As a group, make a list of the items you can use to make your exhibit interesting on your group organizer. 1-5 points
 Here are some suggestions:
 - Make a poster with 100 little garbage bags. Color the correct number of bags to illustrate how much paper is in every 100 pounds of trash.
 - Show the kinds of paper that cannot be recycled.
 - Show the kinds of glass that can be recycled and the kinds that cannot.

Step 3: Use Your Talent and Write Your Script
1. As a group, decide who will do which jobs and list them on your group organizer. You can have more than one person working on each job. Be sure to cover the following jobs:
 - Script Writer
 - Display Creator(s)
 - Materials Collector
 - Presenter 1-5 points
2. Write a three minute script using the list of important facts your group generated. 1-5 points

Step 4: Create Your Exhibit
1. Create an interesting display with pictures, graphs, and hands-on materials. Make sure the display and the script cover the same information. 1-5 points
2. Practice the script so that you won’t have to read it. Use note cards with the important facts listed on them.

Step 5: Teach Others
1. Give a presentation of your exhibit to others. 1-5 points

Total Points: ________________
Exhibit 7: Waste-to-Energy

Just Burn It!

Americans are producing more and more waste with each passing year. In 1960, the average American threw away 2.7 pounds of trash a day. Today, the average American throws away 4.4 pounds of trash every day! What are we going to do with all that trash?

One solution is to burn it. Burning is sometimes called combustion. All organic waste contains energy. Organic waste is waste that is made from plant or animal products.

People have burned one type of organic material for millions of years. Can you guess what that material is? It’s wood. Ancient people burned wood to keep them warm and to cook their food. In many parts of the world, wood is still the number one source of energy.

Today, we can burn garbage and use its heat energy to make steam to heat buildings or to generate electricity. This may sound amazing, but it is really nothing new. Most electric power companies already burn another type of material to make electricity. That material is coal. Coal is a mineral that was formed from the remains of plants that died hundreds of millions of years ago.

Power companies use the heat energy in coal to make electricity. Garbage does not contain as much heat energy as coal, though. It takes one ton (2,000 pounds) of garbage to equal the heat energy in 500 pounds of coal.

Today, there are 80 waste-to-energy plants in the United States. Plus, there are solid waste incinerators. These old-style incinerators simply burn trash to get rid of it. They do not use the heat energy to make steam or electricity. Today, the U.S. burns 12.8 percent of its solid waste.

Waste-to-Energy Plants

Waste-to-energy plants work very much like coal-fired power plants. The difference is the fuel. Waste-to-energy plants use garbage—not coal—to fire an industrial boiler. The same steps are used to make electricity in a waste-to-energy plant as in a coal-fired power plant:

1. The fuel is burned in a boiler, releasing heat.
2. The heat superheats water into steam.
3. The very high pressure of the steam turns the blades of a turbine generator to produce electricity.
4. A utility company sends the electricity along power lines to homes, schools, and businesses.

You can think of garbage as a mixture of energy-rich fuels. In 100 pounds of typical garbage, more than 80 pounds can be burned as fuel to generate electricity at a power plant. Those fuels include paper, plastics, and yard waste. A ton of garbage generates about 350 kilowatt-hours (kWh) of electricity, enough energy to heat a typical office building for one day.

The Energy in Garbage

It takes 2,000 pounds of garbage to equal the heat energy in 500 pounds of coal.

Burning Trash

Burning trash reduces its weight by 75 percent and its volume by 90 percent.

The high-temperature incinerator in a waste-to-energy plant burns most of the waste. All that is left is a substance called ash. Ash is the solid residue left over when something is burned. It’s like the ash left over from a wood fire in the bottom of a fireplace. In a waste-to-energy plant, after combustion, approximately ten percent of the volume remains as ash. This ash is generally sent to a landfill.

Why Burn Garbage?

Waste-to-energy plants generate enough electricity to supply almost three million households. But, providing electricity is not the major advantage of waste-to-energy plants. In fact, it costs more to generate electricity at a waste-to-energy plant than it does at a coal, nuclear, or hydropower plant.
The major advantage of burning waste is that it reduces the amount of garbage we bury in landfills. Burning waste reduces the amount of trash going to landfills by 75 percent. In 2014, waste-to-energy plants combusted about 33.1 million tons of solid waste for energy recovery.

The average American produces more than 1,600 pounds of waste a year. If all of this waste were landfilled, it would take more than two cubic yards of landfill space. That’s the volume of a box three feet long, three feet wide, and six feet high. If that waste were burned, the ash residue would fit into a box three feet long, three feet wide, but only nine inches high!

Why is reducing the amount of waste buried in landfills so important? Some communities in the congested Northeast may be running out of land for new landfills. And, since most people don’t want landfills in their backyards, it has become more difficult to obtain permits to build new landfills. Taking the country as a whole, the United States has plenty of open space, of course, but it is expensive to transport garbage a long distance to put it into a landfill.

Some people are concerned that burning garbage may harm the environment. Like coal plants, waste-to-energy plants produce air pollution when the fuel is burned. Burning garbage releases chemicals and substances found in the waste. Some chemicals can be dangerous to people and the environment if they are not properly controlled.

Air Emissions

The Environmental Protection Agency (EPA)—an agency of the Federal Government—applies strict environmental rules to waste-to-energy plants. The EPA requires waste-to-energy plants to use anti-pollution devices, including scrubbers, fabric filters, and electrostatic precipitators. The EPA wants to make sure that harmful gases and particles are not going out the smokestack into the air.

Scrubbers clean chemical gas emissions by spraying a liquid into the gas stream to neutralize the acids. Fabric filters and electrostatic precipitators remove particles from the emissions. The particles are then mixed with the ash that is removed from the bottom of the waste-to-energy plant’s furnace when it is cleaned.

Waste-to-energy plants also have a kind of built-in anti-pollution device. A waste-to-energy furnace burns at such high temperatures (1,800 to 2,000 degrees Fahrenheit) that many complex chemicals naturally break down into simpler, less harmful compounds.

Ash Disposal

Another challenge is the disposal of the ash after combustion. Ash can contain high concentrations of various metals that were present in the original waste. Textile dyes, printing inks, and ceramics, for example, contain the metals lead and cadmium.

Separating waste before combustion can solve part of the problem. For instance, because batteries are the largest source of lead and cadmium in the solid waste stream, they should be taken out of the mix and not burned.
Ash from waste-to-energy plants is tested by the EPA to make sure it is not hazardous. The testing looks for chemicals and metals that would contaminate ground water through leachate, or water trickling through a landfill. Ash that is safe can be reused for many applications. About ten percent of all the ash produced is used in landfills as a daily or final cover layer, to build roads, to make cement blocks, and even to make artificial reefs for marine animals. The majority of ash, though, is buried in landfills.

To Burn Or Not To Burn?

Some critics of waste-to-energy plants are afraid that burning waste will hamper recycling programs. If everyone sends their trash to a waste-to-energy plant, they say, there will be little incentive to recycle. Recently, a study of cities that have both recycling programs and waste-to-energy plants showed higher recycling rates than other cities in the U.S. Why would these cities recycle more when they burn their trash? The results showed that people living in cities with waste-to-energy plants are more educated about municipal solid waste and strongly support their recycling programs.

So, while at first glance, recycling and waste-to-energy seem to be at odds, they can actually complement each other. That's because it makes good sense to recycle some materials, and better sense to burn others.

Let's look at aluminum, for example. Aluminum ore is so expensive to mine that recycling aluminum more than pays for itself. Burning it produces no energy. Also, because aluminum melts at a low temperature, it can clog up the works in a waste-to-energy plant. Aluminum is valuable to recycle and not useful to burn.

Paper, on the other hand, can either be burned or recycled—it all depends on the price the used paper will bring. In the early 1990s, the East Coast experienced an abundance of old newspapers. Some East Coast communities were paid almost nothing for the paper they collected. Some communities couldn't find anyone who wanted to buy their old newspapers, so they ended up paying a trucking company to haul the newspapers to a landfill!

In these cases, burning the newspapers for their energy value would have been a good alternative. Other types of paper, such as those using colored inks and glossy finishes, are not easily recycled and usually should be burned for their energy content.

Plastics are another matter. Because plastics are made from petroleum and natural gas, they are excellent sources of energy for waste-to-energy plants. This is especially true since plastics are not as easy to recycle as steel, aluminum, or paper. Plastics almost always have to be hand sorted and making a product from recycled plastics may cost more than making it from new materials. To burn or not to burn is not really the question. We should use both recycling and waste-to-energy as alternatives to landfilling.

Waste-to-Energy Around the World

Many countries have built waste-to-energy plants to capture the energy in their trash. There are hundreds of waste-to-energy plants in 41 different countries around the world. For example, the use of waste-to-energy plants in some European and Asian countries has grown, in part because they have little open space and few energy resources. The U.S. burns 12.8 percent of its trash in waste-to-energy plants. Some countries burn almost all of their trash to generate electricity.

*Data not reported for many Southern Hemisphere nations.
STUDENT GUIDE TO CREATING A MUSEUM EXHIBIT

Exhibit 7: Waste-to-Energy

Step 1: Learn About Waste-to-Energy
1. Individually, read your informational text and list the important and interesting facts on your individual organizer. 1-5 points
2. As a group, decide which facts you want to teach others and list them on your group organizer. Make sure you answer these questions:
 ▪ What is waste-to-energy?
 ▪ Why burn solid waste?
 ▪ Is burning trash environmentally safe?
 ▪ How does a waste-to-energy plant work?
 ▪ Will burning trash reduce how much is recycled? 1-5 points

Step 2: Plan Your Exhibit
1. As a group, make a list of the items you can use to make your exhibit interesting on your group organizer. 1-5 points
 Here are some suggestions:
 ▪ Get five lunch bags. Write 500 pounds on each bag. Label four bags as garbage and one as coal.
 ▪ Make a poster of the types of trash that can be burned in a waste-to-energy plant and the types of trash that cannot.

Step 3: Use Your Talent and Write Your Script
1. As a group, decide who will do which jobs and list them on your group organizer. You can have more than one person working on each job. Be sure to cover the following jobs:
 ▪ Script Writer
 ▪ Display Creator(s)
 ▪ Materials Collector
 ▪ Presenter 1-5 points
2. Write a three minute script using the list of important facts your group generated. 1-5 points

Step 4: Create Your Exhibit
1. Create an interesting display with pictures, graphs, and hands-on materials. Make sure the display and the script cover the same information. 1-5 points
2. Practice the script so that you won’t have to read it. Use note cards with the important facts listed on them.

Step 5: Teach Others
1. Give a presentation of your exhibit to others. 1-5 points

Total Points: __________________
Exhibit 8: Landfilling

Yesterday and Today
For hundreds of years, people have used garbage dumps to get rid of their trash. Yesterday's garbage dump was nothing more than a pit or field just outside of town where people left their garbage.

People tossed all sorts of waste into these dumps. The dumps were breeding grounds for disease-carrying pests such as flies, mosquitoes, and rats. Rainwater flushed filthy, and sometimes poisonous, liquids from the dump into nearby streams and groundwater supplies that people used for drinking, bathing, and clothes washing.

Later, some towns spread dirt to contain the dumped waste and to discourage pests. This helped, but it was little more than a cover-up for unsanitary dumping.

Today, we still bury our garbage, although not in the open dumps of yesterday. About 53 percent of our garbage is hauled off in garbage trucks and packed into sanitary landfills—making landfilling America's number one way of getting rid of its trash. (The other 46 percent is either recycled or burned.)

Although the nation as a whole has plenty of space to build landfills, some areas in the Northeast may be running out of room for new landfills.

Obtaining permits to build new landfills has become increasingly difficult because of public opposition—people don't want landfills built in their backyards. And besides, a new landfill can cost $10 million to build.

That's why some communities are looking for new ways to deal with solid waste—recycling and burning, for instance. But there will always be a need for landfills. Why? Because not all waste can be recycled or burned. Why burn it if it doesn't provide any heat energy?

Landfill burial is the only feasible way to dispose of some types of waste, and sometimes it's the safest way, too. Generally, the best disposal method for hazardous wastes—batteries, paints, pesticides, and the like—are state-of-the-art landfills. These landfills are designed to prevent hazardous wastes from seeping into underground water supplies.

Now that open dumping is illegal, deciding where to put a landfill requires careful planning. Skilled engineers inspect potential landfill sites. They look at a number of things including:

- the geology of the area;
- the nature of the local environment;
- how easy the site is to reach; and
- how far the site is from the area that generates the waste.

Work on a landfill site begins only after it passes strict legal, environmental, and engineering tests. It is not a quick procedure; landfills can take five years to complete.

A Modern Landfill
Today's landfills are very different from the open dumps of the past. For one thing, new landfills are situated where clay deposits and other land features act as natural buffers between the landfills and the surrounding environment.

Second, the bottom and sides of modern landfills are lined with layers of clay or plastic to keep the liquid waste, called leachate, from escaping into the soil. A network of drains collects the leachate and pumps it to the surface where it can be treated. Ground wells are also drilled into and around the landfill to monitor water quality and to detect any contamination. These safety measures keep groundwater, which is the main source of drinking water in many communities, clean and pure.

To protect the environment even more, the landfill is divided into a series of individual cells. Only a few cells of the site (called the working face) are filled with trash at any one time, minimizing exposure to wind and rain.

At the end of each day's activities, workers spread a layer of earth—called the daily cover—over the waste to reduce odor and control pests. The workers fill and cap each cell with a layer of clay and earth, and then seed the area with native grasses.

A Full Landfill
When a landfill is full, workers seal and cover the landfill with a final cap of clay and dirt. Workers continue to monitor the ground wells for years after a landfill is closed to keep tabs on the quality of groundwater on and around the site.

Old landfill sites can be landscaped to blend in with their surroundings, or specially developed to provide an asset to a community. Closed landfills can be turned into anything from parks to parking lots, from golf courses to ski slopes. Building homes and businesses on these sites is generally not permitted, though, since it can take many years for the ground to settle.

Trash Flashback
“Thither were brought the dead dogs and cats, the kitchen garbage and the like, and duly dumped. This festering, rotten mess was picked over by rag-pickers and wallowed over by pigs—pigs and humans contesting for a living in it, and as the heaps increased, the odors increased also, and the mass lay corrupting under a tropical sun, dispersing the pestilential fumes where the winds carried them.”

Biodegradation

You have probably seen all sorts of consumer products, from paper bags to egg cartons, claim that they are biodegradable. What does biodegradable mean and are the claims true?

Biodegradation is a natural process. It happens when microorganisms, such as fungi or bacteria, secrete enzymes that chemically break down or degrade dead plants and animals. In other words, biodegradation is when waste decays or rots.

Most organic wastes are biodegradable under normal environmental conditions. Given enough time, the waste will disintegrate into harmless substances, enriching the soil with nutrients.

A landfill is not a normal environmental condition, though, nor is it intended to be. Instead, a landfill is more like a tightly sealed storage container. A landfill is designed to inhibit degradation to protect the environment from harmful contamination.

Deprived of air and water, even organic wastes—like paper and grass clippings—degrade very slowly in a landfill.

Bioreactor Landfills

A new approach to landfills is designing them so that organic waste is allowed to biodegrade. These landfills, called bioreactors, are different than most landfills used today.

One type of bioreactor is aerobic (with air). Leachate is removed from the bottom layer of the landfill and put into storage tanks. The leachate is then pumped back into the landfill, allowing it to flow over the waste repeatedly. Air is then added to the landfill. This type of bioreactor models normal conditions of air and moisture in the environment better than other landfills, and encourages the natural process of biodegrading.

Another bioreactor is anaerobic (without air). In this type of landfill, air is not added, but the leachate is collected and pumped back into the landfill. Additional liquids may also be added to the leachate to help the waste biodegrade. Because the waste is broken down without oxygen, anaerobic bioreactors produce landfill gas, or methane, which can then be used as an energy source.

Bioreactor landfills have advantages over traditional landfills. They reduce the cost of removing and disposing of leachate, which is used on site. Anaerobic bioreactors begin producing methane much more quickly than landfills designed to inhibit degradation. Bioreactors also gain space as the waste degrades, meaning more waste can be added.

Landfill Facilities, 2014

Data: EPA

Modern Landfill

Trash
Methane Gas Recovery System
Clay Cap
Leachate Treatment System
Leachate Collection System
Landfill Liner
Well to Monitor Ground Water
Aquifer
Landfill Gas as an Energy Source

Did you know that landfills can be sources of energy? Organic waste produces a gas called methane as it decomposes, or rots. Methane is the same energy-rich gas that is in natural gas, the fuel sold by natural gas utility companies. Methane gas is colorless and odorless. Natural gas utilities add an odorant so people can detect seeping gas, but it can be dangerous to people or the environment. New rules require landfills to collect methane gas as a pollution and safety measure.

Some landfills simply burn the methane gas in a controlled fashion to get rid of it, but the methane can be used as an energy source. Landfills can collect the methane gas, treat it, and then sell it as a commercial fuel, or they can burn it to generate steam and electricity. In 2003, East Kentucky Power Cooperative began recovering methane gas from three landfills. The utility uses the landfill gas to generate electricity. Today, six landfill gas facilities generate enough electricity to power about 9,000 KY homes.

In 2014, there were 634 operating landfill gas energy projects in the United States. California has the most projects in operation with 76, followed by Michigan with 42, and Pennsylvania with 39. The United States Environmental Protection Agency examined landfill conditions throughout the nation and almost every state has at least one landfill that would likely produce methane gas for energy use.

What’s in a Landfill?

In 2014, we put roughly 136 million tons of municipal solid waste into U.S. landfills. That’s more than half (53 percent) of all our waste generated that year. So what kinds of trash did we bury in the 1,908 landfills in the U.S.?

Durable goods make up 34.5 million tons of our landfill waste. Durable goods include furniture (9.53 million tons), rubber tires (0.23 million tons), carpets, appliances, and lead batteries. Also discarded in our landfills are 29.92 million tons of containers and packaging—most of which could be recycled. Containers and packaging include plastics (9.81 million tons), paper (7.75 million tons), wood, glass, aluminum, and steel. Nondurable goods such as clothing, disposable diapers, newspapers, paper towels, and trash bags make up 28.22 million tons of waste in our landfills. There is also 29.31 million tons of food scraps, and 10.79 million tons of yard waste discarded into landfills, most of which could be composted instead.
Archaeologists are trained to dig up trash from the past, so when William L. Rathje, Professor Emeritus at the University of Arizona, learned that no one had ever dug into an American landfill, he formed the Garbage Project to discover just what was inside one. After digging into three landfills in Arizona, California, and Illinois, Rathje found out that there are a lot of garbage myths. He and his team discovered that it takes a lot longer for paper and other organic wastes to decompose than people previously thought. Rathje and his team found newspapers from the late 1970s that were still readable. He found “organic debris—green grass clippings, a T-bone steak with lean and fat, and five hot dogs—that looked even better!” Rathje’s research suggests that for some kinds of organic garbage, biodegradation goes on for a while and then slows to a standstill. For other kinds, biodegradation never gets under way at all.

“Well-designed and well-managed landfills, in particular, seem to be far more apt to preserve their contents for posterity than to transform them into humus or mulch,” says Rathje. “They are not vast composters; rather, they are vast mummifiers.” Rathje also discovered that disposable diapers, fast-food packaging, and expanded polystyrene foam take up less landfill space than people generally believe. People in a poll estimated that disposable diapers occupy somewhere between five and 40 percent of landfill space. But Rathje’s study showed that diapers were less than one percent by weight or 1.5 percent by volume of the waste in landfills, far less than people assumed.

The same poll showed that Americans believe fast-food packaging takes up between 20 and 30 percent of landfill space, and expanded foam between 25 to 40 percent. However, the Garbage Project found that fast-food packaging accounts for no more than one-third of one percent of the total volume of the average landfill. Expanded foam—used for egg cartons, meat trays, coffee cups, and packing peanuts—accounts for no more than one percent of the volume of landfilled garbage. “Expanded polystyrene foam, nevertheless, has been the focus of many vocal campaigns to ban it outright,” says Rathje. “It is worth remembering that if such foam were banned, the relatively small amount of space that it takes up in landfills would not be saved. Eggs, hamburgers, coffee, and stereos must still be put in something.”

What is filling our landfills then? According to Rathje, it’s paper, especially newspaper. Rathje concluded that recycling newspapers could significantly lengthen the life of a landfill. Rathje and his team of archaeologists completed more than 20 landfill digs from 1973-2000.

“It’s not a pleasant task,” Rathje says, “but someone has to do it.”
Step 1: Learn About Landfilling

1. Individually, read your informational text and list the important and interesting facts on your individual organizer. 1-5 points

2. As a group, decide which facts you want to teach others and list them on your group organizer. Make sure you answer these questions:
 - What is a landfill?
 - How much garbage do we landfill?
 - What are the benefits of landfilling?
 - What are the problems with landfilling?
 - What new technologies exist for landfills?
 1-5 points

Step 2: Plan Your Exhibit

1. As a group, make a list of the items you can use to make your exhibit interesting on your group organizer. 1-5 points
 Here are some suggestions:
 - Create a poster of a modern landfill.
 - Make a display of the materials that should be landfilled and the materials that should not be landfilled.

Step 3: Use Your Talent and Write Your Script

1. As a group, decide who will do which jobs and list them on your group organizer. You can have more than one person working on each job. Be sure to cover the following jobs:
 - Script Writer
 - Display Creator(s)
 - Materials Collector
 - Presenter
 1-5 points

2. Write a three minute script using the list of important facts your group generated. 1-5 points

Step 4: Create Your Exhibit

1. Create an interesting display with pictures, graphs, and hands-on materials. Make sure the display and the script cover the same information. 1-5 points

2. Practice the script so that you won’t have to read it. Use note cards with the important facts listed on them.

Step 5: Teach Others

1. Give a presentation of your exhibit to others. 1-5 points

Total Points: ________
The NEED Youth Energy Conference and Awards gives students more opportunities to learn about energy and to explore energy in STEM (science, technology, engineering, and math). The annual June conference has students from across the country working in groups on an Energy Challenge designed to stretch their minds and energy knowledge. A limited number of spaces are available for Full STEM Ahead, a special two-day pre-conference event, which allows students access to additional information, time to discuss energy with their peers, and access to industry professionals. The conference culminates with the Youth Awards Ceremony recognizing student work throughout the year and during the conference.

For More Info: www.youthenergyconference.org

All NEED schools have outstanding classroom-based programs in which students learn about energy. Does your school have student leaders who extend these activities into their communities? To recognize outstanding achievement and reward student leadership, The NEED Project conducts the National Youth Awards Program for Energy Achievement.

Share Your Energy Outreach with The NEED Network! This program combines academic competition with recognition to acknowledge everyone involved in NEED during the year—and to recognize those who achieve excellence in energy education in their schools and communities.

What’s involved? Students and teachers set goals and objectives and keep a record of their activities. Students create a digital project to submit for judging. In April, digital projects are uploaded to the online submission site.

Want more info? Check out www.NEED.org/Youth-Awards for more application and program information, previous winners, and photos of past events.
<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Did you conduct the entire activity?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Was the instructions clear and easy to follow?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Did the activity meet your academic objectives?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Was the activity age appropriate?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Was the allotted time sufficient to conduct the activity?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Was the activity easy to use?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Was the preparation required acceptable for the activity?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Were the students interested and motivated?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Was the energy knowledge content age appropriate?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Would you teach this activity again?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please explain any “no” statements below

How would you rate the activity overall? | excellent | good | fair | poor |
How would your students rate the activity overall? | excellent | good | fair | poor |

What would make the activity more useful to you?
__
__
__

Other Comments:
__
__
__

Please fax or mail to: The NEED Project
8408 Kao Circle
Manassas, VA 20110
FAX: 1-800-847-1820
National Sponsors and Partners

Air Equipment Company
Alaska Electric Light & Power Company
Albuquerque Public Schools
American Electric Power
American Fuel & Petrochemical Manufacturers
Arizona Public Service
Armstrong Energy Corporation
Barnstable County, Massachusetts
Robert L. Bayless, Producer, LLC
BG Group/Shell
BP America Inc.
Blue Grass Energy
Cape Light Compact–Massachusetts
Central Falls School District
Chugach Electric Association, Inc.
CITGO
Clean Energy Collective
Colonial Pipeline
Columbia Gas of Massachusetts
ComEd
ConEdison Solutions
ConocoPhillips
Constellation
Cuesta College
David Petroleum Corporation
Desk and Derrick of Roswell, NM
Direct Energy
Dominion Energy
Donors Choose
Duke Energy
East Kentucky Power
Energy Market Authority – Singapore
Escambia County Public School Foundation
Eversource
Exelon Foundation
Foundation for Environmental Education
FPL
The Franklin Institute
George Mason University – Environmental Science and Policy
Gerald Harrington, Geologist
Government of Thailand–Energy Ministry
Green Power EMC
Guilford County Schools – North Carolina
Gulf Power
Hawaii Energy
Idaho National Laboratory
Illinois Clean Energy Community Foundation
Illinois Institute of Technology
Independent Petroleum Association of New Mexico
James Madison University
Kentucky Department of Energy Development and Independence
Kentucky Power – An AEP Company
Kentucky Utilities Company
League of United Latin American Citizens – National Educational Service Centers
Leidos
Linn County Rural Electric Cooperative
Llano Land and Exploration
Louisville Gas and Electric Company
Mississippi Development Authority–Energy Division
Mississippi Gulf Coast Community Foundation
Mojave Environmental Education Consortium
Mojave Unified School District
Montana Energy Education Council
The Mountain Institute
National Fuel
National Grid
National Hydropower Association
National Ocean Industries Association
National Renewable Energy Laboratory
NC Green Power
New Mexico Oil Corporation
New Mexico Landman’s Association
NextEra Energy Resources
NEXTracker
Nicol Gas
Nisource Charitable Foundation
Noble Energy
Nolin Rural Electric Cooperative
Northern Rivers Family Services
North Carolina Department of Environmental Quality
North Shore Gas
Offshore Technology Conference
Ohio Energy Project
Opterra Energy
Pacific Gas and Electric Company
PECO
Pecos Valley Energy Committee
Peoples Gas
Pepco
Performance Services, Inc.
Petroleum Equipment and Services Association
Phillips 66
PNM
PowerSouth Energy Cooperative
Providence Public Schools
Quarto Publishing Group
Read & Stevens, Inc.
Renewable Energy Alaska Project
Rhode Island Office of Energy Resources
Robert Armstrong
Roswell Geological Society
Salt River Project
Salt River Rural Electric Cooperative
Saudi Aramco
Schlumberger
C.T. Seaver Trust
Secure Futures, LLC
Shell
Shell Chemicals
Sigora Solar
Singapore Ministry of Education
Society of Petroleum Engineers
Society of Petroleum Engineers – Middle East, North Africa and South Asia
Solar City
David Sorenson
South Orange County Community College District
Tennessee Department of Economic and Community Development–Energy Division
Tesla
Tesoro Foundation
Tri-State Generation and Transmission
TXU Energy
United Way of Greater Philadelphia and Southern New Jersey
University of Kentucky
University of Maine
University of North Carolina
University of Tennessee
University of Alaska
U.S. Department of Energy
U.S. Department of Energy–Wind for Schools
U.S. Energy Information Administration
United States Virgin Islands Energy Office
Wayne County Sustainable Energy
Western Massachusetts Electric Company
Yates Petroleum Corporation